
The BEAST Manual
The Beast Project <beast.testbit.org>

November 2019

Abstract
Manual about usage, installation, development and imple-
mentation of the Beast digital synthesizer and music cre-
ation system.

1

https://beast.testbit.org/

CONTENTS CONTENTS

Contents

1 The BEAST Manual 5
2 Tutorials 6
2.1 First Song Editing . 6

3 How-to Articles 7
3.1 Using a MIDI device . 7

4 Manual Pages 8
4.1 BEAST(1) . 8
4.2 BSEWAVETOOL(1) . 10
4.3 BSE(5) . 16
4.4 SFIDL(1) . 17

5 File Formats and Conventions 19
5.1 The overall structure of BSE files . 19

5.1.1 Identification Tag . 19
5.1.2 Important keywords . 19
5.1.3 Binary Appendices . 20

6 Background & Discussions 21
6.1 Threading Overview . 21
6.2 AIDA - Abstract Interface Definition Adapter 21

6.2.1 IDL - The interface definition files . 21
7 Vue Component Reference 23

7.0.1 B-ABOUTDIALOG . 23
7.0.2 B-BUTTON-BAR . 23
7.0.3 B-BUTTON . 23
7.0.4 B-COLOR-PICKER . 24
7.0.5 B-CONTEXTMENU . 24
7.0.6 B-DEVICEEDITOR . 24
7.0.7 B-DEVICEPANEL . 25
7.0.8 B-EXAMPLE . 25
7.0.9 B-FED-NUMBER . 25
7.0.10 B-FED-OBJECT . 26
7.0.11 B-FED-PICKLIST . 26
7.0.12 B-FED-SWITCH . 26
7.0.13 B-FED-TEXT . 27
7.0.14 B-HFLEX . 27
7.0.15 B-VFLEX . 28
7.0.16 B-GRID . 28
7.0.17 B-HSCROLLBAR . 28
7.0.18 B-ICON . 28
7.0.19 B-MENUITEM . 29
7.0.20 B-MENUROW . 29
7.0.21 B-MENUSEPARATOR . 29
7.0.22 B-MENUTITLE . 29

2

CONTENTS CONTENTS

7.0.23 B-MODALDIALOG . 30
7.0.24 B-PART-LIST . 30
7.0.25 B-PART-THUMB . 30
7.0.26 B-PIANO-ROLL . 31
7.0.27 B-PLAYCONTROLS . 31
7.0.28 B-PREFERENCESDIALOG . 31
7.0.29 B-PROJECTSHELL . 31
7.0.30 B-TRACK-LIST . 31
7.0.31 B-TRACK-VIEW . 32
7.0.32 B-TREESELECTOR-ITEM . 32
7.0.33 B-TREESELECTOR . 32

8 BSE API Reference 33
8.1 Namespace Bse . 33

8.1.1 Bse::init_async() . 33
9 Historic Artefacts 34
9.1 Ancient type system description . 34

9.1.1 BSE Structures . 34
9.1.2 The BSE type system . 35

9.2 BSE category description . 37
9.2.1 BSE Categories . 38

9.3 BseHeart - Synthesis Loop, Dec 1999 . 39
A Appendix 41
A.1 One-dimensional Cubic Interpolation . 41
A.2 Modifier Keys . 43

3

LIST OF TABLES LIST OF TABLES

List of Tables
1 Set of toplevel categories used by libbse. 38
2 Category examples from the Beast source code. 39
3 GDK drag-and-drop modifier keys . 43

4

1 THE BEAST MANUAL

1 The BEAST Manual
This is the Beast manual, Beast is a music synthesis and composition program.
The manual is structured into sections covering tutorial material, Howto descriptions, Man
pages, file formats and conventions, background discussions concerning development con-
siderations and an API reference.
It is written in Markdown and contributions are welcome, e.g. as pull requests or via the
Beast issue tracker.

5

https://github.com/tim-janik/beast/issues/

2 TUTORIALS

2 Tutorials

2.1 First Song Editing
Start Beast, it will open up with an empty project by default.
Select Project → New Song, in order to add notes, tracks and instruments for some music
composition.
Select the Add Track icon button, so the song has at least one track which corresponds to a
playable instrument.
Select the tracks Synth field and select an instrument to be played back for this track.
Create a new part within the track by clicking into the tracks timeline. A part contains the
notes that the instrument will play when playback is actiavted for this song.

6

3 HOW-TO ARTICLES

3 How-to Articles
This space is for Howto articels about how to do things.

3.1 Using a MIDI device
1. From the command line, list the known PCM / MIDI devices: beast --bse-driver-

list

2. Start Beast with a selected MIDI device, e.g.: beast -m alsa=hw:0,0

3. Select and play Demo→ MIDI Test to test notes from devices like MIDI keyboards.

7

4 MANUAL PAGES

4 Manual Pages

4.1 BEAST(1)
NAME
beast - Music composition and modular synthesis application
SYNOPSIS
beast [OPTIONS] [FILES...]
DESCRIPTION
Beast is the BEtter Audio SysTem. It is a music composition and modular synthesis applica-
tion released as free software under the GNU LGPL.
Beast comes with various synthesis modules which can be arranged in networks for modular
synthesis. It is capable of monophonic and polyphonic voice processing, provides MIDI se-
quencer functionality and supports external sequencer sources. A huge set of extra modules
is available through the support for LADSPA (Linux Audio Developer’s Simple Plugin API)
plugins.
OPTIONS
Beast follows the usual GNU command line syntax, with long options starting with two
dashes (’-’).
General options
--skinrc FILENAME

Read skin resources from FILENAME.
--print-dir RESOURCE

Print the directory for a specific resource (e.g. ’plugins’ or ’images’). Giving just -
-print-dir without an extra argument causes Beast to print the list of available re-
sources.

--merge
Cause the following files to be merged into the previous or first project.

--devel
Enrich the GUI with hints useful for (script) developers

-h, --help
Show a brief help message.

-v, --version
Print out Beast with component versions and file paths.

-n NICELEVEL
Execute with priorityNICELEVEL, this option only takes effect for the root suid wrapper
’beast’.

-N Disable renicing to execute with existing priority.
--display DISPLAY

X server display for the GUI; see X(7).
--bse-latency USECONDS

Set the allowed synthesis latency for Bse in milliseconds.
--bse-mixing-freq FREQUENCY

Set the desired synthesis mixing frequency in Hz.

8

http://www.xfree86.org/current/X.7.html

4.1 BEAST(1) 4 MANUAL PAGES

--bse-control-freq FREQUENCY
Set the desired control frequency in Hz, this should be much smaller than the synthesis
mixing frequency to reduce CPU load. The default value of approximately 1000 Hz is
usually a good choice.

--bse-pcm-driver DRIVER-CONF
-p DRIVER-CONF

This options results in an attempt to open the PCM driver DRIVER-CONF when play-
back is started. Multiple options may be supplied to try a variety of drivers and unless
DRIVER-CONF is specified as ’auto’, only the drivers listed by options are used. Each
DRIVER-CONF consists of a driver name and an optional comma seperated list of ar-
guments attached to the driver with an equal sign, e.g.: -p oss=/dev/dsp2,rw -p
auto

--bse-midi-driver DRIVER-CONF
-m DRIVER-CONF

This option is similar to the --bse-pcm-driver option, but applies to MIDI drivers and
devices. It also may be specified multiple times and features an ’auto’ driver.

--bse-driver-list
Produce a list of all available PCM and MIDI drivers and available devices.

-- Stop argument processing, interpret all remaining arguments as file names.
Development Options
--debug KEYS

Enable certain verbosity stages.
--debug-list

List possible debug keys.
-:[FLAGS]

This option enables or disables various debugging specific flags for Beast core develop-
ers. Use of -: is not recommended, because the supported flags may change between
versions and cause possibly harmful misbehaviour.

Gtk+ Options
--gtk-debug FLAGS

Gtk+ debugging flags to enable.
--gtk-no-debug FLAGS

Gtk+ debugging flags to disable.
--gtk-module MODULE

Load additional Gtk+ modules.
--gdk-debug FLAGS

Gdk debugging flags to enable.
--gdk-no-debug FLAGS

Gdk debugging flags to disable.
--g-fatal-warnings

Make warnings fatal (abort).
--sync

Do all X calls synchronously.
SEE ALSO
bse(5), sfidl(1), Beast/Bse Website

9

bse.5.html
sfidl.1.html
http://beast.testbit.eu

4.2 BSEWAVETOOL(1) 4 MANUAL PAGES

4.2 BSEWAVETOOL(1)
NAME
bsewavetool - A tool for editing the native multisample format of Beast and Bse
SYNOPSIS
bsewavetool [tool-options] command<file.bsewave> [command-arguments]
DESCRIPTION
Bsewavetool is a command line tool for editing the native multisample format for Beast and
Bse, the Bsewave format. Some common operations are creating new Bsewave files, adding
chunks to an existing file, encoding the sample data, adding meta information or exporting
chunks.
Common uses for Bsewave files are:
• Mapping an individual sample to each midi note (key on the keyboard) - this is mainly
useful for drumkits.
• Approximating the sound of an instrument (such as a piano) by sampling some notes,
and mapping these to the corresponding frequencies in a Bsewave file - when such
a file is loaded by Bse and a note is played, Bse will play the ’nearest’ note, and - if
necessary - pitch it.

OPTIONS
A number of options can be used with bsewavetool in combination with the commands:
-o<output.bsewave>

Name of the destination file (default: <file.bsewave>).
--silent

Suppress extra processing information.
--skip-errors

Skip errors (may overwrite Bsewave files after load errors occoured for part of its
contents).

-h, --help
Show elaborated help message with command documentation.

-v, --version
Print version information.

COMMANDS
Store
store
Store the input Bsewave as output Bsewave. If both file names are the same, the Bsewave file
is simply rewritten. Allthough no explicit modifications are performed on the Bsewave, ex-
ternally referenced sample files will be inlined, chunks may be reordered, and other changes
related to the Bsewave storage process may occour.
Create
create<n_channels> [options]

10

4.2 BSEWAVETOOL(1) 4 MANUAL PAGES

Create an empty Bsewave file,<n_channels>=1 (mono) and<n_channels>=2 (stereo) are
currently supported.
Options:
-N<wave-name>

Name of the wave stored inside of <output.bsewave>.
-f Force creation even if the file exists already.
Oggenc
oggenc [options]
Compress all chunks with the Vorbis audio codec and store the wave data as Ogg/Vorbis
streams inside the Bsewave file.
Options:
-q<n>

Use quality level<n>, refer to oggenc(1) for details.
Add Chunk
add-chunk [options] {-m=midi-note|-f=osc-freq}<sample-file> ...
Add a new chunk containing <sample-file> to the wave file. For each chunk, a unique
oscillator frequency must be given to determine what note the chunk is to be played back
for. Multi oscillator frequency + sample-file option combinations may be given on the
command line to add multiple wave chunks. The -f and -m options can be omitted for a
sample file, if the oscillator frequency can be determined through auto extract options.
Options:
-f <osc-freq>

Oscillator frequency for the next chunk.
-m<midi-note>

Alternative way to specify oscillator frequency.
--auto-extract-midi-note<nth>

Automatically retrieve the midi note by extracting the <nth> number from the base
name of<sample-file>.

--auto-extract-osc-freq<nth>
Automatically retrieve the oscillator frequency by extracting the<nth> number from
the base name of<sample-file>.

Add Raw Chunk
add-raw-chunk [options] {-m=midi-note|-f=osc-freq}<sample-file> ...
Add a new chunk just like with ’add-chunk’, but load raw sample data. Additional raw
sample format options are supported.
Options:
-R<mix-freq>

Mixing frequency for the next chunk [44100].
-F<format>

Raw sample format, supported formats are: alaw, ulaw, float, signed-8, signed-12,
signed-16, unsigned-8, unsigned-12, unsigned-16 [signed-16].

11

4.2 BSEWAVETOOL(1) 4 MANUAL PAGES

-B<byte-order>
Raw sample byte order, supported types: little-endian, big-endian [little-endian].

Del Chunk
del-chunk {-m=midi-note|-f=osc-freq|--chunk-key=key|--all-chunks}
Removes one or more chunks from the Bsewave file.
Options:
-f <osc-freq>

Oscillator frequency to select a wave chunk.
-m<midi-note>

Alternative way to specify oscillator frequency.
--chunk-key<key>

Select wave chunk using chunk key from list-chunks.
--all-chunks

Delete all chunks.
XInfo
xinfo {-m=midi-note|-f=osc-freq|--chunk-key=key|--all-chunks|--wave} key=[value] ...
Add, change or remove an XInfo string of a Bsewave file. Omission of [value] deletes the
XInfo associated with the key. Key and value pairs may be specified multiple times, op-
tionally preceeded by location options to control what portion of a Bsewave file (the wave,
individual wave chunks or all wave chunks) should be affected.
Options:
-f <osc-freq>

Oscillator frequency to select a wave chunk.
-m<midi-note>

Alternative way to specify oscillator frequency.
--chunk-key<key>

Select wave chunk using chunk key from list-chunks.
--all-chunks

Apply XInfo modification to all chunks.
--wave

Apply XInfo modifications to the wave itself.
Info
info {-m=midi-note|-f=osc-freq|--chunk-key=key|--all-chunks|--wave} [options]
Print information about the chunks of a Bsewave file.
Options:
-f <osc-freq>

Oscillator frequency to select a wave chunk.
-m<midi-note>

Alternative way to specify oscillator frequency.
--all-chunks

Show information for all chunks (default).
--chunk-key<key>

Select wave chunk using chunk key from list-chunks.

12

4.2 BSEWAVETOOL(1) 4 MANUAL PAGES

--wave
Show information for the wave.

--pretty=medium
Use human readable format (default).

--pretty=full
Use human readable format with all details.

--script<field1>,<field2>,<field3>,...,<fieldN>
Use script readable line based space separated output.

Valid wave or chunk fields:
channels

Number of channels.
label

User interface label.
blurb

Associated comment.
Valid wave fields:
authors

Authors who participated in creating the wave file.
license

License specifying redistribution and other legal terms.
play-type

Set of required play back facilities for a wave.
Valid chunk fields:
osc-freq

Frequency of the chunk.
mix-freq

Sampling rate of the chunk.
midi-note

Midi note of a chunk.
length

Length of the chunk in sample frames.
volume

Volume at which the chunk is to be played.
format

Storage format used to save the chunk data.
loop-type

Whether the chunk is to be looped.
loop-start

Offset in sample frames for the start of the loop.
loop-end

Offset in sample frames for the end of the loop.
loop-count

Maximum limit for how often the loop should be repeated.
Chunk fields that can be computed for the signal:
+avg-energy-raw

Average signal energy (dB) of the raw data of the chunk.

13

4.2 BSEWAVETOOL(1) 4 MANUAL PAGES

+avg-energy
Average signal energy (dB) using volume xinfo.

The script output consists of one line per chunk. The individual fields of a line are sepa-
rated by a single space. Special characters are escaped, such as spaces, tabs, newlines and
backslashes. So each line of script parsable output can be parsed using the read(P) shell
command. Optional fields will printed as a single (escaped) space.
The human readable output formats (--pretty) may vary in future versions and are not rec-
ommended as script input.
Clip
clip {-m=midi-note|-f=osc-freq|--chunk-key=key|--all-chunks} [options]
Clip head and or tail of a wave chunk and produce fade-in ramps at the beginning. Wave
chunks which are clipped to an essential 0-length will automatically be deleted.
Options:
-f <osc-freq>

Oscillator frequency to select a wave chunk.
-m<midi-note>

Alternative way to specify oscillator frequency.
--chunk-key<key>

Select wave chunk using chunk key from list-chunks.
--all-chunks

Try to clip all chunks.
-s=<threshold>

Set the minimum signal threshold (0..32767) [16].
-h=<head-samples>

Number of silence samples to verify at head [0].
-t=<tail-samples>

Number of silence samples to verify at tail [0].
-f=<fade-samples>

Number of samples to fade-in before signal starts [16].
-p=<pad-samples>

Number of padding samples after signal ends [16].
-r=<tail-silence>

Number of silence samples required at tail to allow tail clipping [0].
Normali e
normalize {-m=midi-note|-f=osc-freq|--chunk-key=key|--all-chunks} [options]
Normalize wave chunk. This is used to extend (or compress) the signal range to optimally
fit the available unclipped dynamic range.
Options:
-f <osc-freq>

Oscillator frequency to select a wave chunk.
-m<midi-note>

Alternative way to specify oscillator frequency.
--chunk-key<key>

Select wave chunk using chunk key from list-chunks.

14

4.2 BSEWAVETOOL(1) 4 MANUAL PAGES

--all-chunks
Try to normalize all chunks.

Loop
loop {-m=midi-note|-f=osc-freq|--all-chunks} [options]
Find suitable loop points.
Options:
-f <osc-freq>

Oscillator frequency to select a wave chunk
-m<midi-note>

Alternative way to specify oscillator frequency
--chunk-key<key>

Select wave chunk using chunk key from list-chunks
--all-chunks

Try to loop all chunks
Highpass
highpass [options]
Apply highpass filter to wave data.
Options:
--cutoff-freq<f>

Filter cutoff frequency in Hz
--order<o>

Filter order [64]
Lowpass
lowpass [options]
Apply lowpass filter to wave data.
Options:
--cutoff-freq<f>

Filter cutoff frequency in Hz
--order <o>

Filter order [64]
Upsample2
upsample2 [options]
Resample wave data to twice the sampling frequency.
Options:
--precision<bits>

Set resampler precision bits [24]. Supported precisions: 1, 8, 12, 16, 20, 24 (1 is a
special value for linear interpolation)

Downsample2
downsample2 [options]

15

4.3 BSE(5) 4 MANUAL PAGES

Resample wave data to half the sampling frequency.
Options:
--precision<bits>

Set resampler precision bits [24]. Supported precisions: 1, 8, 12, 16, 20, 24 (1 is a
special value for linear interpolation).

Export
export {-m=midi-note|-f=osc-freq|--chunk-key=key|--all-chunks|-x=filename} [options]
Export chunks from Bsewave as WAV file.
Options:
-x<filename>

Set export filename (supports %N %F and %C, see below).
-f <osc-freq>

Oscillator frequency to select a wave chunk.
-m<midi-note>

Alternative way to specify oscillator frequency.
--chunk-key<key>

Select wave chunk using chunk key from list-chunks.
--all-chunks

Try to export all chunks.
The export filename can contain the following extra information:
%F The frequency of the chunk.
%N The midi note of the chunk.
%C Cent detuning of the midi note.
List Chunks
list-chunks [options]
Prints a list of chunk keys of the chunks contained in the Bsewave file. A chunk key for a
given chunk identifies the chunk uniquely and stays valid if other chunks are inserted and
deleted.
This bash script shows the length of all chunks (like info --all-chunks):
for key in `bsewavetool list-chunks foo.bsewave` ; do
bsewavetool info foo.bsewave --chunk-key $key --script length ;

done

SEE ALSO
beast(1), Beast/Bse Website, Samples and Wave Files in Beast

4.3 BSE(5)
NAME
BSE - Better Sound Engine File Format
SYNOPSIS

16

beast.1.html
http://beast.testbit.eu
https://testbit.eu/wiki/Beast_Architecture#Samples_and_Wave_Files

4.4 SFIDL(1) 4 MANUAL PAGES

filename.bse
DESCRIPTION
The Bse file format is used by the Bse library and dependent programs to save projects,
songs, instruments and sample collections.
FORMAT
Bse files start out with a special magic string "; BseProject\n" and then contain nested ex-
pressions in scheme syntax using the ASCII charset. Binary data may be appended to a *.bse
file if it is separated from the preceeding ASCII text by one or more literal NUL characters
('\0'). This mechanism is used to store arbitrary binary data like WAV or Ogg/Vorbis files
in Bse projects, while keeping the actual content user editable - text editors that preserve
binary sections have to be used, such as vi(1) or emacs(1).
COMPATIBILITY
The exact format and sets of objects and properties used in a Bse file depend highly on
the library version that was used to save the file. Compatibility functions are supplied by
the library itself, so old Bse files can be converted when the file is loaded. To enable this
mechanism, all Bse files contain a "bse-version" directive which indicates the Bse file
format version of the supplied content.
SEE ALSO
beast(1), bsewavetool(1), BSE Reference

4.4 SFIDL(1)
NAME
sfidl - SFI IDL Compiler (Beast internal)
SYNOPSIS
sfidl [OPTIONS] input.idl
DESCRIPTION
Sfidl generates glue code for Bse objects and plugins from interface definition language files.
OPTIONS
--help [BINDING]

Print general usage information. Or, if BINDINGwas specified, print usage information
for this language binding.

--version
Print program version.

-I DIRECTORY
Add DIRECTORY to include path.

--print-include-path
Print include path.

--nostdinc
Prevents standard include path from being used.

Language bindings:

17

beast.1.html
bsewavetool.1.html
https://testbit.eu/pub/docs/beast/latest/namespaceBse.html

4.4 SFIDL(1) 4 MANUAL PAGES

--client-c
Generate C client language binding.

--client-c
Generate C core language binding.

--host-c
Generate C host language binding.

--client-cxx
Generate C++ client language binding.

--core-cxx
Generate C++ core language binding.

--plugin
Generate C++ plugin language binding.

--list-types
Print all types defined in the idlfile. This option is used only for BSE internally to ease
transition from C to C++ types.

Language binding options:
--header

Generate header file, this is the default.
--source

Generate source file.
--prefix prefix

C host/client language binding option, sets the prefix for C functions. The prefix en-
sures that no symbol clashes will occur between different programs/libraries which
are using a binding, so it is important to set it to something unique to your applica-
tion/library.

--init name
Set the name of the init function for C host/core bindings.

--namespace namespace
C++ client language binding, sets the namespace to use for the code. The names-
pace ensures that no symbol clashes will occur between different programs/libraries
which are using a binding, so it is important to set it to something unique to your
application/library.

--lower
Select lower case identifiers in the C++ client language binding (create_midi_synth),
this is the default.

--mixed
Select mixed case identifiers in the C++ client language binding (createMidiSynth).

SEE ALSO
BSE Reference, Sfidl Manual

18

https://testbit.eu/pub/docs/beast/latest/namespaceBse.html
https://testbit.eu/wiki/Sfidl

5 FILE FORMATS AND CONVENTIONS

5 File Formats and Conventions

5.1 The overall structure of BSE files
A *.bse file is an Ascii file with occasional binary appendix and contains various data proc-
cessed by the BSE library. The readable (Ascii) part of a .bse file is held in lisp syntax and
mostly build up out of (keyword value) pairs.

5.1.1 Identification Tag

[NOTE: currently (1999-12-21) the identification tag support is disabled, and subject for general
overhaul. A new implementation is likely to come soon and will probably (roughly) follow this
specification.]
Each file has a special identification tag in the first line:
(BSE-Data V1 0000000004); -*- scheme -*-
^^^^^^^^ ^^ ^^^^^^^^^^
| | |
| | ten-digit octal flag
| |
| version tag
|
BSE data-identifier

and is matched against a regexp pattern (in grep -E syntax):
^\(BSE-Data\ V1\ [0-7]{10}\);.*$

Note that the ';' at the end of the right parenthesis is actually part of the expression and
needs to directly follow the right parenthesis, whereas the space inbetween the ';' and the
line end '\n' can contain any number of, or even no characters at all. The ten-digit octal
value is a short hand flag to identify the various kinds of data held in the current file. Its
value corresponds to the enum definiton BseIoDataFlags in <bse/bseenums.h>.

5.1.2 Important keywords

Main statement keywords - prefixed by a left parenthesis, to start a certain statement - are:
BseSNet

A source network specification, containing all the sources (filters) contained in the
network, their properties and associated link structures.

BseSong
Holding a song definition including all of a song’s data, e.g. instrument definitions,
patterns, effects, etc.

BseSample
A sample definition, usually including references to certain binary blocks that have
their binary data appended to the file.

Substatement keywords depend on the object (main statement) they apply to, and should
be mostly self explanatory ;)

19

5.1 The overall structure of BSE files 5 FILE FORMATS AND CONVENTIONS

5.1.3 Binary Appendices

One object invariant substatement keyword is ”BseBinStorageV0”, it’s syntax is as follows:
(BseBinStorageV0 <UOFFSET> <ENDIANESS>:<N_BITS> <ULENGTH>)

<UOFFSET>
offset within the binary appendix for this block’s data

<ENDIANESS>
either ’L’ or ’B’ for respectively little or big endianess

<N_BITS>
number of bits per (endianess-conformant) value stored in this block

<ULENGTH>
number of bytes contained in this block

Binary appendices are stored after the ascii part of a .bse file. A NUL ('\0') byte char-
acter unambiguously marks the end of the ascii portion. Directly following this NUL byte
the binary appendix starts out, containing binary data as specified through the various Bse-
BinStorageV0 statements within the ascii portion. Files without binary appendix may not
contain the terminating NUL byte.

20

6 BACKGROUND & DISCUSSIONS

6 Background & Discussions
Space for notes about the synthesis engine, undo/redo stacks and other technical bits.

6.1 Threading Overview
On a high level, Beast constitutes the front-end to the libbse sound engine.
The BSE sound engine spawns a separate (main) thread separate from the UI for all sound
related management and a number of digital signal processing (DSP) sub threads to facilitate
parallelized synthesis.
Invocations of the libbse API are automatically relayed to the BSE thread via an IPC mecha-
nism.
The main BSE thread is where the API facing BSE objects live. For actual sound synthesis,
these objects spawn synthesis engine modules that process audio buffers from within the
DSP threads. The number of parallel DSP threads usually corresponds to the number of
cores available to libbse.
Additionally, libbse spawns a separate sequencer thread that generates note-on, note-off
and related commands from the notes, parts and tracks contained in a project. The synchro-
nization required by the sequencer thread with the main thread and the DSP threads is fairly
complicated, which is why this is planned to be merged into the DSP threads at some point.

6.2 AIDA - Abstract Interface Definition Adapter
Aida is used to communicate with a regular API between threads and to cross programming
language barriers. At the heart of Aida is the IDL file which defines Enums, Records, Se-
quences and interfaces. Interface methods can be called from one thread and executed on
class instances living in other threads. Additionally, callback execution can be scheduled
across thread boundaries by attaching them to Event emissions of an instance living in an-
other thread.
Within Beast, Aida is used to bridge between the UI logic (the ”Beast-GUI” or ”EBeast-
module” threads) and the sound synthesis control logic (the ”BseMain” thread).
For an IDL interface Foo, Aida generates a ”client-side” C++ class FooHandle and a ”server-
side” C++ class FooIface. The Iface classes contain pure virtual method definitions that
need to be implemented by the server-side logic. The Handle classes contain corresponding
method wrappers that call the Iface methods across thread boundaries. The Handle meth-
ods are implemented non-virtual to reduce the risk of ABI breakage for use cases where only
the client-side API is exposed.

6.2.1 IDL - The interface definition files

6.2.1.1 Namespace
At the outermost scope, an IDL file contains a namespace definition. Interfaces, enums,
records and sequences all need to be defined with namespaces in IDL files.

21

6.2 AIDA - Abstract Interface Definition Adapter 6 BACKGROUND & DISCUSSIONS

6.2.1.2 Primitive Types
The primitive types supported in IDL files are enums, bool, integer, float and string types.
The supported compound types are sequences - a typed variable length array, records - a
set of named and typed variables with meta data, Any - a variant type, and inheritable
interfaces.

6.2.1.3 Enum
Enum values are defined with integer values and allow VALUE = Enum (N, strings...)
syntax to add meta data to enum values.

6.2.1.4 Interface
An interface can contain methods and property definitions and inherit from other interfaces.
Properties defined on an interface are largely sugar for generating two idiomatic getter and
setter access methods, but the set of properties and associated meta data of an interface can
be accessed programmatically through the __access__() method. The Bse::Object imple-
mentation makes use of this facility to implement the dynamic property API set_prop(),
get_prop(), find_prop(), list_props(). The syntax for property definitions with meta
data is TYPE property_name = Auxillary (strings...);, the Auxillary() constructor
can take various forms, but ultimately just constructs a list of UTF-8 key=value strings that
can be retrieved at runtime.

6.2.1.5 Any
An Any is a variant type that can contain any of the other primitive types. It is most useful
to represent dynamically typed values in C++which are common in languages like Python
or Javascript. If an Any is set to store an IDL Enum value, it also records the Enum type
name, to allow later re-identification. In general, Any should only be needed for languages
that do not have dynamic variable types (like C++), and should not normally need to be
exposed in dynamic languages (like Python, Javascript). E.g. converting an enum property
value stored in an Any to a native type in a dynamic language, a pair could be returned, like
(1, "Bse::FooEnum").

22

7 VUE COMPONENT REFERENCE

7 Vue Component Reference
The Vue components used in EBEAST are usually composed of a single file that provides:

a) Brief documentation;
b) Html layout;
c) CSS style information;
d) Assorted JS logic.

The Vue component object is defined as part of (d). We often use <canvas> elements for
EBEAST specific displays, and Vue canvas handling comes with certain caveats:
1) Use of the Util.vue_mixins.dom_updates mixin (now default) allows to trigger the

dom_update() component method for $forceUpdate() invocations and related events.
2) A methods: { dom_update() {}, } component entry should be provided that triggers
the actual canvas rendering logic.

3) Using a document.fonts.ready promise, EBEAST re-renders all Vue components via
$forceUpdate() once all webfonts have been loaded, <canvas> elements containing
text usually need to re-render themselves in this case.

7.0.1 B-ABOUTDIALOG

A b-modaldialog that displays version information about Beast.
Events:
close

A close event is emitted once the ”Close” button activated.

7.0.2 B-BUTTON-BAR

A Vue container for tight packing of buttons.
Slots:
slot All contents passed into this element will be packed tightly and styled as buttons.

7.0.3 B-BUTTON

A button element that responds to clicks.
Props:
hotkey

Keyboard accelerator to trigger a click event.
Events:
click

A click event is emitted for activation through mouse buttons, Space or Enter keys.

23

7 VUE COMPONENT REFERENCE

Slots:
default

All contents passed into this element will be rendered as contents of the button.

7.0.4 B-COLOR-PICKER

Vue template to display a color picker popup.
Props:
initial-color

The initial color to display.
data:
color

The currently selected color.

7.0.5 B-CONTEXTMENU

A modal popup that displays contextmenu choices, see B-MENUITEM, B-MENUSEPARATOR.
Using the popup() method, the menu can be popped up from the parent component, and
setting up an onclick handler can be used to handle menuitem actions. Example:
<div @contextmenu.prevent="$refs.cmenu.popup">

<b-contextmenu ref="cmenu" @click="menuactivation">...</b-contextmenu>
</div>

Props:
Events:
click (role)

Event signaling activation of a submenu item, the role of the submenu is provided as
argument.

Methods:
popup (event, origin)

Popup the contextmenu, the event coordinates are used for positioning, the origin is
a
reference DOM element to use for drop-down positioning.

close()
Hide the contextmenu.

7.0.6 B-DEVICEEDITOR

Editor for editing of modules.
Props:
device

Container for the modules.

24

7 VUE COMPONENT REFERENCE

7.0.7 B-DEVICEPANEL

Panel for editing of devices.
Props:
track

Container for the devices.

7.0.8 B-EXAMPLE

A collection of Vue documentation pointers and notes on idiomatic use.
Attr:
Attributes set on a component are by default transferred to its root element, see: inheritAttrs:
false. The component can access the attributes through this.$attrs, this can e.g. be used
for initial prop values.
Props:
Parents can set values on child component via the props array, the child itself must not
change its props, see: Passing Data to Child Components with Props
Propert :
Child components can contain computed properties that are get/set-able from the parent via
the computed arraay, see: Computed Properties and Watchers
Slots:
Child components can embed parent DOM contents via the v-slotmechanism, see: Content
Distribution with Slots

7.0.9 B-FED-NUMBER

A field-editor for integer or floating point number ranges. The input value will be con-
strained to take on an amount between min and max inclusively.
Properties:
value

Contains the number being edited.
min The minimum amount that value can take on.
max The maximum amount that value can take on.
step A useful amount for stepwise increments.
allowfloat

Unless this setting is true, numbers are constrained to integer values.
readonly

Make this component non editable for the user.
Events:

25

https://vuejs.org/v2/guide/components-props.html#Disabling-Attribute-Inheritance
https://vuejs.org/v2/guide/components-props.html#Disabling-Attribute-Inheritance
https://vuejs.org/v2/guide/components.html#Passing-Data-to-Child-Components-with-Props
https://vuejs.org/v2/guide/computed.html
https://vuejs.org/v2/guide/components-slots.html
https://vuejs.org/v2/guide/components-slots.html

7 VUE COMPONENT REFERENCE

input
This event is emitted whenever the value changes through user input or needs to be
constrained.

7.0.10 B-FED-OBJECT

A field-editor for object input. A copy of the input value is edited, update notifications are
provided via an input event.
Properties:
value

Object with properties to be edited.
default

Object with default property values.
readonly

Make this component non editable for the user.
debounce

Delay in milliseconds for input event notifications.
Events:
input

This event is emitted whenever the value changes through user input or needs to be
constrained.

7.0.11 B-FED-PICKLIST

A field-editor for picklist input.
Properties:
value

Contains the picklist string being edited.
readonly

Make this component non editable for the user.
Events:
input

This event is emitted whenever the value changes through user input or needs to be
constrained.

7.0.12 B-FED-SWITCH

A field-editor switch to change between on and off.
Properties:
value

Contains a boolean indicating whether the switch is on or off.
readonly

Make this component non editable for the user.

26

7 VUE COMPONENT REFERENCE

Events:
input

This event is emitted whenever the value changes through user input or needs to be
constrained.

7.0.13 B-FED-TEXT

A field-editor for text input.
Properties:
value

Contains the text string being edited.
readonly

Make this component non editable for the user.
Events:
input

This event is emitted whenever the value changes through user input or needs to be
constrained.

7.0.14 B-HFLEX

A flex container for horizontal layouting (or vertical in the case of B-VFLEX).
Props:
inline

Use ’display: inline-flex’ as layout mode, e.g. to integrate this container into text flow.
reverse

Reverse the layout direction, i.e. layout from bottom → top, or right → left.
start

Children are packed towards the start of the flex direction:
end Children are packed towards the end of the flex direction:
center

Children are packed towards the center of the flex direction:
space-between

Additional space is distributed between the children.
space-around

Additional space is evenly distributed between the children and half a spacing around
the edges.

space-evenly
Children will have additional space evenly distributed around them and the edges.

grow0 grow1 grow2 grow3 grow4 grow5 grow6 grow7 grow8 grow9
Grow space for this element if additional space is available with the given strength (0
= none).

shrink0 shrink1 shrink2 shrink3 shrink4 shrink5 shrink6 shrink7 shrink8 shrink9
Shrink space for this element if space is too tight with the given strength (0 = none).

wrap
Layout of the flexbox children may wrap if the elements use more than 100%.

27

https://www.w3.org/TR/css-flexbox-1/#flex-containers

7 VUE COMPONENT REFERENCE

wrap-reverse
Layout of the flexbox children may wrap if the elements use more than 100%, in
reverse order.

Slots:
The default slot holds the contextmenu content.

7.0.15 B-VFLEX

A vertical variant of the B-HFLEX container for vertical layouting.

7.0.16 B-GRID

A grid container for grid layouting (visual cheatsheet.
Props:
inline

Use ’display: inline-grid’ as layout mode, e.g. to integrate this container into text flow.
Slots:

The default slot holds the contextmenu content.

7.0.17 B-HSCROLLBAR

Vue template to display a horizontal scrollbar.
Props:
value

The current scrollbar value.

7.0.18 B-ICON

This element displays icons from various icon fonts. Note, to style the color of icon font
symbols, simply apply the color CSS property to this element (styling fill as for SVG
elements is not needed).
Props:
iconclass

A CSS class to apply to this icon.
fa The name of a ”Fork Awesome” icon (compatible with ”Font Awesome 4”), see the

Fork Awesome Icons.
mi The name of a ”Material Icons” icon, see the Material Design Icons.
uc A unicode character literal, see the Unicode symbols block list.
ic A prefixed variant of fa, mi, uc.
nosize

Prevent the element from applying default size constraints.
fw Apply fixed-width sizing.
lg Make the icon 33% larger than its container.

28

https://www.w3.org/TR/css-grid-1/#grid-containers
http://grid.malven.co/
https://forkaweso.me/Fork-Awesome/cheatsheet/
https://material.io/tools/icons/
https://en.wikipedia.org/wiki/Unicode_symbols#Symbol_block_list

7 VUE COMPONENT REFERENCE

7.0.19 B-MENUITEM

A menuitem element to be used as a descendant of a B-CONTEXTMENU. The menuitem can
be activated via keyboard focus or mouse click and will notify its B-CONTEXTMENU about
the click and its role, unless the @click.prevent modifier is used. If no role is specified,
the B-CONTEXTMENU will still be notified to be closed, unless $event.preventDefault()
is called.
Props:
role Descriptor for this menuitem that is passed on to its B-CONTEXTMENU onclick.
disabled

Boolean flag indicating disabled state.
fa, mi, uc

Shorthands icon properties that are forwarded to a B-ICON used inside the menuitem.
Events:
click

Event emitted on keyboard/mouse activation, use preventDefault() to avoid closing
the menu on clicks.

Slots:
default

All contents passed into this slot will be rendered as contents of this element.

7.0.20 B-MENUROW

Menuitems are packed horizontally inside a menurow.
Props:
noturn

Avoid turning the icon-label direction in menu items to be upside down.
Slots:
default

All contents passed into this slot will be rendered as contents of this element.

7.0.21 B-MENUSEPARATOR

A menu element that serves as a visual separator between other elements.

7.0.22 B-MENUTITLE

An element to be used as menu title.
Slots:
default

All contents passed into this slot will be rendered as contents of this element.

29

7 VUE COMPONENT REFERENCE

7.0.23 B-MODALDIALOG

A dialog component that disables and dims everything else for exclusive dialog use. Using
b-modaldialog with v-if enables a modal dialog that dims all other elements while it is visible
and constrains the focus chain. A close event is emitted on clicks outside of the dialog area,
if Escape is pressed or the default Close button is actiavted.
Props:
value

A boolean value to control the visibility of the dialog, suitable for v-model bindings.
Events:
input

An input event with value false is emitted when the ”Close” button activated.
Slots:
header

The header slot can be used to hold the modal dialog title.
default

The default slot holds the main content.
footer

By default, the footer slot holds a Close button which emits the close event.
CSS Classes:
b-modaldialog

The b-modaldialog CSS class contains styling for the actual dialog contents.

7.0.24 B-PART-LIST

A Vue template to display a list of Bse.Part instances.
Props:
project

The BSE project containing playback tracks.
track

The BseTrack containing the parts to display.

7.0.25 B-PART-THUMB

A Vue template to display a thumbnail for a Bse.Part.
Props:
part The Bse.Part to display.
tick The Bse.Track tick position.

30

7 VUE COMPONENT REFERENCE

7.0.26 B-PIANO-ROLL

A Vue template to display a Bse.part as a piano roll.
Props:
part The Bse.Part to display.
Data:
hscrollbar

The horizontal scrollbar component, used to provide the virtual scrolling position for
the notes canvas.

part Retrieve the Bse.Part set via the part property.

7.0.27 B-PLAYCONTROLS

A container holding the play and seek controls for a Bse.song.
Props:
project

Injected Bse.Project, using b-projectshell.project.
b-positionview - Displa of the song positoin pointer and related information
Props:
• project - The BSE object providing playback API.

7.0.28 B-PREFERENCESDIALOG

A b-modaldialog to edit Beast preferences.
Events:
close

A close event is emitted once the ”Close” button activated.

7.0.29 B-PROJECTSHELL

Shell for editing and display of a Bse.Project.
Props:
project

Implicit Bse.Project, using App.bse_project().

7.0.30 B-TRACK-LIST

A container for vertical display of Bse.Track instances.
Props:

31

7 VUE COMPONENT REFERENCE

song
The Bse.Song containing playback tracks.

7.0.31 B-TRACK-VIEW

A Vue template to display a song’s Bse.Track.
Props:
project

The Bse.project containing playback tracks.
track

The Bse.Track to display.

7.0.32 B-TREESELECTOR-ITEM

An element representing an entry of a B-TREESELECTOR, which allows selections.

7.0.33 B-TREESELECTOR

A b-modaldialog that displays a tree and allows selections.
Events:
close

A close event is emitted once the ”Close” button activated.

32

8 BSE API REFERENCE

8 BSE API Reference

8.1 Namespace Bse
Members declared within the Bse namespace.

8.1.1 Bse::init_async()

// namespace Bse
void
init_async (int *argc,

char **argv,
const char *app_name,
const StringVector &args);

Initialize and start BSE. Initialize the BSE library and start the main BSE thread. Arguments
specific to BSE are removed from argc / argv.

33

9 HISTORIC ARTEFACTS

9 Historic Artefacts
Historic notes and writeups that are likely outdated or obsolete.

9.1 Ancient type system description
Description of the BSE types and its type system around 1999, before the migration to GOb-
ject.

9.1.1 BSE Structures

9.1.1.1 BseChunk
A BseChunk contains header informations for sample value blocks passed around during
sound processing, and a pointer to the associated sample data itself. The pure sample data
blocks are referred to as ”Hunk”s. A hunk’s size is determined by the size of each sample
value: sizeof (BseSampleValue), the number of tracks contained in a hunk (for instance a
stereo hunk contains 2 tracks) and a global variable that designates the block (hunk’s) size
for the current sound processing run: BSE_TRACK_LENGTH (bse_globals->track_length).
The sample values themselves are layed out interleaved within the hunk, e.g. a 2 track
stereo hunk with a hunk_length of 16 would contain:
L - left track (1) value
R - right track (2) value
LRLRLRLRLRLRLRLRLRLRLRLRLRLRLRLR

Each chunk is associated with a certain output channel of a specific source, and applies to a
distinct time frame. The actuall time frame length is determined through BSE_TRACK_LENGTH
and the current mixing frequency BSE_MIX_FREQ.

9.1.1.2 BseParam
A parameter that can be get/set on an object. Each parameter has a parameter specification
associated with it.

9.1.1.3 BseParamSpec*
A parameter specification similar to an object’s class or to procedure classes, but for a given
parameter type multiple parameter specifications may exist (e.g. to implement integer pa-
rameters with different ranges). Thus the type system actually implements parameters as
”unclassed” types.

9.1.1.4 BseObject
BseObject implements basic structure operations and provides the necessary cruft for objects
to have classes.

9.1.1.5 BseObjectClass
A class associated with each objects instance. A class is referenced by its object instances.
introduces per-object parameters.

34

9.1 Ancient type system description 9 HISTORIC ARTEFACTS

9.1.1.6 BseProcedure
A BseProcedure is a a special classed-only (i.e. not-object) type that holds parameter specifi-
cations in it’s calss structure and can be called. Work is in progress to map certain procedures
to certain object types, so they can be thought of as special object-methods to do perform
certain object specific modifications.

9.1.1.7 BsePlugin
A plugin handle that holds information about existing plugins, such as where the actuall
plugin’s implementation is stored on disk and what types of objects are implemented by the
plugin.
Plugin can provide:
• object and class implementations derived from BseEffect or BseSource
• procedure classes
• enum and flags definitions (currently lacks implementation)
• sample/song file loading and saving routines (currently lacks implementation)

9.1.1.8 BseType
type ids are provided for objects & classes, object interfaces, parameters, procedures, enum
& flags definitions.

9.1.2 The BSE type system

BSE features a single inheritance object hierarchy with multiple interfaces. It therefore
contains a type system that registers several object and non-object types. The type system
features unclassed types (parameters), classed types (enumerations and procedures) and
object types (also classed). The type system implemented by BSE has several analogies to the
Gtk+ type system and several type system related code portions have been traded between
the two projects. However, the BSE type system got furtherly enhanced (read: complicated
;) in some regards by featuring dynamic types to allow certain implementations to reside in
dynamic plugins.
Usually, all types get registered with their name, description and inheritance information
upon startup and for static types the implementation related type information is also stored
right away. This information cannot be stored right away for dynamic types since the imple-
mentation related type information contains function pointers that will not remaind valid
across the life time of plugins (a plugin being loaded, unloaded and the reloaded again will
most certainly end up in a different memory location than before). When class or object
instances of a dynamic type need to be created, the corresponding plugin will be loaded
into memory and the required implementation related type information will be retrieved.
Upon destruction of the instance, the type info is released again and the plugin will be
unloaded. So for dynamic types, the only things that stays persistent across plugin life times
are the type’s name, description, inheritance information and type id, as well as additional
information about what plugin this type is implemented by.
Parameter types are unclassed and do not feature inheritance, they are merely variable type
ids to distinguish between e.g. strings and integers. Enumeration types are classed, with
flags being a certain kind of enumerations in that their values only feature certain bits. For

35

9.1 Ancient type system description 9 HISTORIC ARTEFACTS

enumertaions, a flat hierarchy is supported, where every enumeration or flags type derives
from BSE_TYPE_ENUM or BSE_TYPE_FLAGS respectively.
Object types are classed as well, and may exist in multiple instances per type id. They
feature single inheritance and multiple interfaces, where an interface type denotes a certain
alternate class-based vtable that is required to adress similar object methods from different
heirarchy branches with the same API. Type inheritance can be examined by testing their
is_a relationships, e.g. for a type parent and a type child deriving from parent, the
following holds true: child is_a parent, while the reverse: parent is_a child would
fail, because child inherits all of parent’s facilities, but not the other way around.
Whether a certain object type implements a specific interface, can be tested through the
conforms_to relationship, e.g. for an interface I requirering a method implementation foo
and a base type B, not implementing foo with it’s two child types C and D, both carrying
different imlpementations of foo, the following applies:
• B conforms_to I: FALSE
• C conforms_to I: TRUE
• D conforms_to I: TRUE

We will now outline the several steps that are taken by the type system to create/destroy
classes and objects. This is actually the guide line for the type system’s implementation, so
feel free to skip this over ;) In the below, unreferencing of certain objects may automati-
cally cause their destruction, info structure retrival and releasing may (for dynamic types)
accompany plugin loading/unloading.

9.1.2.1 initialization
• all static type ids + type infos get registered
• all dynamic type ids get registered (implies: all interface type ids are registered)
• static type infos are persistant

9.1.2.2 class creation
• type info is enforced
• parent class is referenced
• class gets allocated and initialized

9.1.2.3 object creation
• class is referenced
• object is allocated and initialized

9.1.2.4 object destruction
• object gets deallocated (destruction has already been handled by the object system)
• class gets unreferenced

9.1.2.5 class destruction
• class gets destructed and deallocated
• type info is released
• parent class is unreferenced

36

9.2 BSE category description 9 HISTORIC ARTEFACTS

9.1.2.6 interface registration
• interface id gets embeded in the host type’s interface entry list
• the interface is registered for all children as well

9.1.2.7 interface class creation
• class is given
• class is referenced
• interface info is enforced
• interface is referenced
• interface entry info is enforced
• interface class is allocated and initialized (and propagated to children)

9.1.2.8 interface class destruction
• interface class gets destructed and deallocated (and propagated to children)
• interface entry info is released
• interface gets unreferenced
• interface info is released
• class gets unreferenced

9.1.2.9 BSE Sources
Each source can have an (conceptually) infinite amount of input channels and serve a source
network (BseSNet) with multiple output channels. Per source, a list of input channels is
kept (source pointer and output channel id, along with an associated history hint). Sources
also keep back links to other sources using its output channels, this is required to maintain
automated history updates and purging.

9.1.2.10 BSE Source Networks
A BSE Source Network is an accumulation of BseSources that are interconnected to controll
sample data flow. The net as a whole is maintained by a BseSNet object which keeps ref-
erences of all sources contained in the net and provides means to store/retrieve undo/redo
information for the whole net and implements the corresponding requirements to save and
load the complete net at a certain configuration.
Implementation details:
• a BseSNet keeps a list and references of all sources contained in the net.
• each source can have a (conceptually) infinite amount of input channels and serve the
net with multiple output channels.
• per source, a list of input channels is kept (source pointer plus output channel id, along
with an associated history hint).
• sources also keep back links to sources using its output channels, this is required to
maintain automated history updates.

9.2 BSE category description
Description of the BSE categories around 2003, before the removal of procedures.

37

9.2 BSE category description 9 HISTORIC ARTEFACTS

9.2.1 BSE Categories

The purpose of BSE Categories is to provide a mapping of functionality provided by BSE and
its plugins to GUI frontends. Categories are used to provide a hirarchical structure, to group
certain services and to aid the user in finding required functionality.

9.2.1.1 Object Categories
BSE objects and procedures are ”categorized” to easily integrate them into menu or similar
operation structures in GUIs.
Objects that are derived from the BseSource class with the main intend to be used as synthe-
sis modules in a synthesis network are categorized under the /Modules/ toplevel category,
ordered by operational categories.

9.2.1.2 Core Procedures
Procedures provided by the BSE core are categorized under a subcategory of the /Meth-
ods/ toplevel category. The object type a procedure operates on is appended to the toplevel
category to form a category name starting with /Methods/<ObjectType>/. Procedures im-
plementing object methods need to take the object as first argument and follow a special
naming convention (for the procedure name). To construct the procedure type name, the ob-
ject type and method named are concatenated to form <ObjectType>+<MethodName>. This
ensure proper namespacing of method names to avoid clashes with equally named methods
of distinct object types. Some special internal procedures may also be entered under the
/Proc/ toplevel category.

9.2.1.3 Utility Procedures
Procedures implementing utility functionality, usually implemented as scripts, are entered
into one of the below listed categories. Depending on the category, some procedure argu-
ments are automatically provided by the GUI, the name and type of automatic arguments
are listed with the category in the following table:

Table 1: Set of toplevel categories used by libbse.
Category Automatic arguments as (name:type) pairs
/Project/ project:BseProject
/SNet/ snet:BseSNet
/Song/ song:BseSong
/Part/ part:BsePart
/CSynth/ csynth:BseCSynth
/WaveRepo/ wave_repo:BseWaveRepo
/Wave/ wave:BseWave

The set of automatic arguments provided upon invocation is not restricted by te above lists,
so caution should be taken when naming multiple arguments to a procedure auto_*.

9.2.1.4 Aliasing/Mapping
A certain BSE type (procedure or object) may be entered under several categories simulta-
neously, thus allowing multiple categories to refer (alias) to the same type (functionality).

38

9.3 BseHeart - Synthesis Loop, Dec 1999 9 HISTORIC ARTEFACTS

9.2.1.5 Examples

Table 2: Category examples from the Beast source code.
Category TypeName Comment
/Methods/BseProject/File/Store BseProject+store-bse BseProject procedure
/Modules/Spatial/Balance BseBalance synthesis module
/SNet Utility/Utils/Grid Align modules2grid scheme script

9.3 BseHeart - Synthesis Loop, Dec 1999
BSE’s heart is a unique globally existing object of type BseHeart which takes care of glueing
the PCM devices and the internal network structure together and handle syncronization
issues.
BseHeart brings the internal network to work by incrementing a global BSE index variable,
cycling all active BseSources to that new index, collecting their output chunks and writing
them into the output PCM devices. As of now there are still some unsolved syncronization
problems, such as having multiple PCM devices that run at different speeds. While this
could be solved for multiples/fractions of their mixing frequencies, such as one device (card)
running at 44100Hz and another one at 22050Hz, problems still remain for slight alterations
in their oscilaltors if a device e.g. runs at 44099Hz (such as the es1371 from newer PCI SB
cards).
For the time being, we do not handle different output/input frequencies at all and use our
own syncronization within BSE, bound to GLib’s main loop mechanism by BseHeart attach-
ing a GSource.
To support user defined latencies, PCM Devices implement their own output buffer queue
which is used for temporary storage of output buffers if the specified latency forces a delay
greater than what can be achived through the device driver’s queue. The devices also main-
tain an input queue for recorded data to avoid overruns in the PCM drivers, ideally these
queues will immediatedly be emptied again because output is also required.
FIXME: A check may be necessary to catch indefinitely growing input queues due to input->output
frequency differences. We will also need to catch input underruns here, though handling that is
somwhat easier in that we can simply slide in a zero pad chunk there.
The fundamental BSE cycling (block-wise processing of all currently active sources) is bound
to the PCM devices output requirements, according to the current latency setting. Integrated
into GLib’s main loop, we perform the following steps:
prepare():

We walk all input devices until one is found that reports requirement to process incom-
ing data. We walk all output devices until one is found that reports requirement to
process outgoing data or needs refilling of its output queue, according to the latency
settiongs. If none is found, the devices report an estimated timeout value for how long
it takes until they need to process further data. [Implementation note: as an optimization,
we walk all PCM devices in one run and leave the distinction between input and output up

39

9.3 BseHeart - Synthesis Loop, Dec 1999 9 HISTORIC ARTEFACTS

to them] The minimum of the reported timeout values is used for GLib’s main loop to
determine when to check for dispatching again.

check():
We simply do the same thing as in prepare() to figure whether some PCM devices need
processing and if necessary request dispatching.

dispatch():
We walk the output devices in order to flush remaining queued chunks, and collect
reports on whether they need new input blocks according to the latency setting. We
walk the input devices so they can process incoming data (queue it up in chunks).
[Implementation note: as an optimization, we currently do these two walks in one step,
leaving the details to the PCM devices] Now here’s the tweak: if any output device reports
the need for further input data, we perform a complete BSE cycle. If no output devices
require further input data, we walk the input devices and check whether they have
more than one chunk in their queue (and if necessary, fix that) this is required to catch
overruns and constrain output latency.

cycle():
For input devices that have empty queues, we report underruns and pad their queues
with zero chunks, i.e. we ensure all input PCM devices have at least one usable chunk
in their input queue. We increment the BseIndex of all currently active BseSources,
calc their output chunks and queue them up for all output sources connected to them.
We walk the input devices and remove exactly one chunk from their input queues.

40

A APPENDIX

A Appendix

A.1 One-dimensional Cubic Interpolation
With four sample values 𝑉0, 𝑉1, 𝑉2 and 𝑉3, cubic interpolation approximates the curve
segment connecting 𝑉1 and 𝑉2, by using the beginning and ending slope, the curvature and
the rate of curvature change to construct a cubic polynomial.
The cubic polynomial starts out as:
(1) 𝑓 (𝑥) = 𝑤3𝑥3 + 𝑤2𝑥2 + 𝑤1𝑥 + 𝑤0

Where 0 <= 𝑥 <= 1, specifying the sample value of the curve segment between 𝑉1 and 𝑉2
to obtain.
To calculate the coefficients 𝑤0, …,𝑤3, we set out the following conditions:
(2) 𝑓 (0) = 𝑉1
(3) 𝑓 (1) = 𝑉2
(4) 𝑓 ′(0) = 𝑉 ′

1
(5) 𝑓 ′(1) = 𝑉 ′

2

We obtain 𝑉 ′
1 and 𝑉 ′

2 from the respecting slope triangles:
(6) 𝑉 ′

1 =
𝑉2−𝑉0

2
(7) 𝑉 ′

2 =
𝑉3−𝑉1

2

With (6) → (4) and (7) → (5) we get:
(8) 𝑓 ′(0) = 𝑉2−𝑉0

2
(9) 𝑓 ′(1) = 𝑉3−𝑉1

2

The derivation of 𝑓 (𝑥) is:
(10) 𝑓 ′(𝑥) = 3𝑤3𝑥2 + 2𝑤2𝑥 + 𝑤1

From 𝑥 = 0 → (1), i.e. (2), we obtain 𝑤0 and from 𝑥 = 0 → (10), i.e. (8), we obtain 𝑤1.
With 𝑤0 and 𝑤1 we can solve the linear equation system formed by (3) → (1) and (5) →
(10) to obtain 𝑤2 and 𝑤3.
(11) (3) → (1): 𝑤3 + 𝑤2 +

𝑉2−𝑉0
2 + 𝑉1 = 𝑉2

(12) (5) → (10): 3𝑤3 + 2𝑤2 +
𝑉2−𝑉0

2 = 𝑉3−𝑉1
2

With the resulting coefficients:

41

A.1 One-dimensional Cubic Interpolation A APPENDIX

𝑤0 = 𝑉1 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑣𝑎𝑙𝑢𝑒)

𝑤1 =
𝑉2 − 𝑉0

2 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑠𝑙𝑜𝑝𝑒)

𝑤2 =
−𝑉3 + 4𝑉2 − 5𝑉1 + 2𝑉0

2 (𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒)

𝑤3 =
𝑉3 − 3𝑉2 + 3𝑉1 − 𝑉0

2 (𝑟𝑎𝑡𝑒 𝑐ℎ𝑎𝑛𝑔𝑒 𝑜𝑓 𝑐𝑢𝑟𝑣𝑎𝑡𝑢𝑟𝑒)

Reformulating (1) to involve just multiplications and additions (eliminating power), we get:
(13) 𝑓 (𝑥) = ((𝑤3𝑥 + 𝑤2)𝑥 + 𝑤1)𝑥 + 𝑤0

Based on 𝑉0, …,𝑉3, 𝑤0, …,𝑤3 and (13), we can now approximate all values of the curve
segment between 𝑉1 and 𝑉2.
However, for practical resampling applications where only a specific precision is required,
the number of points we need out of the curve segment can be reduced to a finite amount.
Lets assume we require 𝑛 equally spread values of the curve segment, then we can precal-
culate 𝑛 sets of 𝑊0,…,3[𝑖], 𝑖 = [0,…, 𝑛], coefficients to speed up the resampling calculation,
trading memory for computational performance. With 𝑤0,…,3 in (1):

𝑓 (𝑥) = 𝑉3 − 3𝑉2 + 3𝑉1 − 𝑉0
2 𝑥3 +

−𝑉3 + 4𝑉2 − 5𝑉1 + 2𝑉0
2 𝑥2 +

𝑉2 − 𝑉0
2 𝑥 +

𝑉1

sorted for 𝑉0, …,𝑉4, we have:
(14)

𝑓 (𝑥) = 𝑉3 (0.5𝑥3 − 0.5𝑥2) +
𝑉2 (−1.5𝑥3 + 2𝑥2 + 0.5𝑥) +
𝑉1 (1.5𝑥3 − 2.5𝑥2 + 1) +
𝑉0 (−0.5𝑥3 + 𝑥2 − 0.5𝑥)

With (14) we can solve 𝑓 (𝑥) for all 𝑥 = 𝑖
𝑛 , where 𝑖 = [0, 1, 2,…, 𝑛] by substituting 𝑔(𝑖) = 𝑓 (𝑖𝑛)with

(15) 𝑔(𝑖) = 𝑉3𝑊3[𝑖] + 𝑉2𝑊2[𝑖] + 𝑉1𝑊1[𝑖] + 𝑉0𝑊0[𝑖]
and using 𝑛 precalculated coefficients𝑊0,…,3 according to:

𝑚 = 𝑖
𝑛

𝑊3[𝑖] = 0.5𝑚3−0.5𝑚2

𝑊2[𝑖] = −1.5𝑚3+ 2𝑚2 + 0.5𝑚
𝑊1[𝑖] = 1.5𝑚3−2.5𝑚2 +1
𝑊0[𝑖] = −0.5𝑚3+ 𝑚2 − 0.5𝑚

42

A.2 Modifier Keys A APPENDIX

We now need to setup𝑊0,…,3[0,…, 𝑛] only once, and are then able to obtain up to 𝑛 approxi-
mation values of the curve segment between 𝑉1 and 𝑉2 with four multiplications and three
additions using (15), given 𝑉0, …,𝑉3.

A.2 Modifier Keys
There seems to be a lot of inconsistency in the behaviour of modifiers (shift and/or control)
with regards to GUI operations like selections and drag and drop behaviour.
According to the Gtk+ implementation, modifiers relate to DND operations according to
the following list:

Table 3: GDK drag-and-drop modifier keys
Modifier Operation Note / X-Cursor
none → copy (else move (else link))
SHIFT → move GDK_FLEUR
CTRL → copy GDK_PLUS, GDK_CROSS
SHIFT+CTRL → link GDK_UL_ANGLE

Regarding selections, the following email provides a short summary:
From: Tim Janik <timj@gtk.org>
To: Hacking Gnomes <Gnome-Hackers@gnome.org>
Subject: modifiers for the second selection
Message-ID: <Pine.LNX.4.21.0207111747190.12292-100000@rabbit.birnet.private>
Date: Thu, 11 Jul 2002 18:10:52 +0200 (CEST)

hi all,

in the course of reimplementing drag-selection for a widget,
i did a small survey of modifier behaviour in other (gnome/
gtk) programs and had to figure that there's no current
standard behaviour to adhere to:

for all applications, the first selection works as
expected, i.e. press-drag-release selects the region
(box) the mouse was draged over. also, starting a new
selection without pressing any modifiers simply replaces
the first one. differences occour when holding a modifier
(shift or ctrl) when starting the second selection.

Gimp:
Shift upon button press: the new seleciton is added to the existing one
Ctrl upon button press: the new selection is subtracted from the

existing one
Shift during drag: the selection area (box or circle) has fixed

aspect ratio
Ctrl during drag: the position of the initial button press

43

A.2 Modifier Keys A APPENDIX

serves as center of the selected box/circle,
rather than the upper left corner

Gnumeric:
Shift upon button press: the first selection is resized
Ctrl upon button press: the new seleciton is added to the existing one

Abiword (selecting text regions):
Shift upon button press: the first selection is resized
Ctrl upon button press: triggers a compound (word) selection that

replaces the first selection

Mozilla (selecting text regions):
Shift upon button press: the first selection is resized

Nautilus:
Shift or Ctrl upon buttn press: the new selection is added to or subtracted

from the first selection, depending on whether
the newly selected region was selected before.
i.e. implementing XOR integration of the newly

selected area into the first.

i'm not pointing this out to start a flame war over what selection style
is good or bad and i do realize that different applications have
different needs (i.e. abiword does need compound selection, and
the aspect-ratio/centering style for gimp wouldn't make too much
sense for text), but i think for the benfit of the (new) users,
there should me more consistency regarding modifier association
with adding/subtracting/resizing/xoring to/from existing selections.

ciaoTJ

44

	The BEAST Manual
	Tutorials
	First Song Editing

	How-to Articles
	Using a MIDI device

	Manual Pages
	BEAST(1)
	BSEWAVETOOL(1)
	BSE(5)
	SFIDL(1)

	File Formats and Conventions
	The overall structure of BSE files
	Identification Tag
	Important keywords
	Binary Appendices

	Background & Discussions
	Threading Overview
	AIDA - Abstract Interface Definition Adapter
	IDL - The interface definition files

	Vue Component Reference
	B-ABOUTDIALOG
	B-BUTTON-BAR
	B-BUTTON
	B-COLOR-PICKER
	B-CONTEXTMENU
	B-DEVICEEDITOR
	B-DEVICEPANEL
	B-EXAMPLE
	B-FED-NUMBER
	B-FED-OBJECT
	B-FED-PICKLIST
	B-FED-SWITCH
	B-FED-TEXT
	B-HFLEX
	B-VFLEX
	B-GRID
	B-HSCROLLBAR
	B-ICON
	B-MENUITEM
	B-MENUROW
	B-MENUSEPARATOR
	B-MENUTITLE
	B-MODALDIALOG
	B-PART-LIST
	B-PART-THUMB
	B-PIANO-ROLL
	B-PLAYCONTROLS
	B-PREFERENCESDIALOG
	B-PROJECTSHELL
	B-TRACK-LIST
	B-TRACK-VIEW
	B-TREESELECTOR-ITEM
	B-TREESELECTOR

	BSE API Reference
	Namespace Bse
	Bse::init_async()

	Historic Artefacts
	Ancient type system description
	BSE Structures
	The BSE type system

	BSE category description
	BSE Categories

	BseHeart - Synthesis Loop, Dec 1999

	Appendix
	One-dimensional Cubic Interpolation
	Modifier Keys

